
1. Introduction
Large wildfires have become increasingly common in recent years (Abatzoglou & Williams, 2016) and their 
immediate destructive impacts are often followed by negative effects on regional air quality, public health, and 
the earth system. These problems have been exacerbated by the effects of climate change, historical containment 
efforts, and water usage, which have made fires more intense and more frequent, burning tree crowns more often 
and altering ecosystem succession dynamics (Halofsky et al., 2020). In turn, efforts to improve forest manage-
ment, emergency response, and forecasting of air quality have the potential to reduce the negative impact of 
large wildfires on populations and the environment in a warming climate (McCaffrey et al., 2020). Air quality 
forecasting and emergency response efforts are commonly aided by models that predict wildfire growth despite 
considerable uncertainty associated with their configurations and inputs. Studies evaluating the accuracy and 
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quality forecasting in their ability to predict daily wildfire spread and fire intensity for the 2019 Williams 
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computational costs of wildfire models under different configurations can thus be crucial in informing commu-
nities in choosing modeling solutions.

Dynamic wildfire models come in a variety of architectures, but only a few direct comparison studies exist 
(Dobrinkova & Dobrinkov, 2014; Graff et al., 2020). These models generally fall into two classes, coupled or 
non-coupled, depending on whether heat from the wildfire influences the atmospheric flow or not (Bakhshaii & 
Johnson, 2019). Non-coupled models such as FARSITE (Finney, 1998), Prometheus (C. Tymstra et al., 2010), 
and BEHAVE (Andrews,  2014)), are often used to aid firefighting efforts because of their computational 
speed and flexibility in inputting meteorological data from simulation or field, but these models are limited 
by their inability to resolve fire-weather interactions. Coupled models such as WRF-Fire (Coen et al., 2013), 
WRF-SFIRE (A. K. Kochanski et al., 2013), and CAWFE (Clark et al., 2004; Coen, 2005) are now widely used 
by researchers to better understand the mechanisms behind and interactions between wildfire spread, atmos-
pheric turbulence, fire-weather, and smoke emission, but they are used less often for operational purposes 
because of longer computing times, complexity of configurations, and difficulty of validating the real-world 
outputs of these models. There have been recent efforts to gear coupled models toward operational forecasting 
(Jimenez et al., 2018; Kochanski et al., 2021; J. Mandel et al., 2014; Wang et al., 2022), but direct compar-
isons between coupled models and simpler approaches are rare in the scientific literature (Dobrinkova & 
Dobrinkov, 2014; Wang et al., 2022). Additionally, multiple studies have been performed to assess the sensi-
tivity of fire-spread modeling to a variety of factors including fuel moisture representation (Matt Jolly, 2007), 
ignition location and timing (Zinger et  al.,  2020) and ignition ahead of the fire line by spotting (Frediani 
et al., 2021). However, we are not aware of work exploring observed containment efforts in the context of 
coupled fire-weather modeling, and more realistic treatments of heat release due to canopy burning are under-
way (Shamsaei et al., 2023).

Despite the widely understood interactions between fire and local weather, operational air quality forecast models 
still often rely on “persistence forecasting,” in which daily burned area from the previous day is assumed to repeat 
and thus forecast emissions on the subsequent days (Ye et al., 2021). Persistence forecasts fail to account for the 
dynamic nature of wildfires, and their performance will be especially poor on days of large fire growth or decline 
(Ye et al., 2021). Although several tools have been explored to overcome the deficiencies of persistence forecast-
ing (Graff et al., 2020; Peterson, Hyer, et al., 2013; Peterson, Wang, et al., 2013; Preisler & Westerling, 2007), 
persistence forecasting remains a de facto standard for smoke forecasting models. Along with persistence in 
burned area, Fire Radiative Power (FRP), or the radiant energy released by a fire, is also predicted as a function of 
the previous days burned area in models such as HRRR-Smoke (Ahmadov et al., 2017) and NCAR WRF-CHEM 
(Kumar et al., 2021). FRP has been found to be highly correlated with smoke emissions from wildfires (Wiggins 
et al., 2020), and important to modeling smoke injection heights (Ye et al., 2021), thus making another great 
benchmark for WRF-Fire comparisons.

Here we evaluate a case-study set of simulations produced by the coupled fire-spread model WRF-Fire (Coen 
et al., 2013; J. Mandel et al., 2011; Muñoz-Esparza et al., 2018) to better understand the potential of coupled 
models to predict daily burned area and FRP. Persistence and smoke emission models are used as benchmarks 
and configurations are varied within the set to reflect potential operational considerations. WRF-Fire can capture 
realistic fire growth, regional meteorology, and Large Eddy Simulation (LES) scale fire induced weather patterns 
all at once with potentially reasonable computing time, making it a prime candidate for improvement over simpler 
methods.

We focus this study on the 2019 Williams Flats Fire, as it was the most intense fire sampled during the 2019 
NASA/NOAA Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field campaign. 
The Williams Flats Fire was ignited by lightning and fuel-driven for the first few days before exploding in 
growth after the breakdown of an upper-level high pressure ridge and subsequent period of enhanced wind speeds 
and instability (Peterson et al., 2022). There were significant efforts to contain the fire and protect surrounding 
buildings which seem to have succeeded in cutting the fire off in the southern and western flank. In addition, a 
pyrocumulonimbus (pyroCb) cloud developed during the final days of the fire (Peterson et al., 2022). We perform 
WRF-Fire simulations starting from both a point source representing ignition, as well as from perimeter obser-
vations. Simulations are run for multiple days, and initialization at different days is compared. We then analyze 
WRF-Fire's forecasting skill under a variety of sensitivities that the end user has control over including horizontal 
resolution, fuel moisture, fuel density, ignition method, and inclusion of containment data.
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2. Methods
The methods are divided into groups either describing WRF-Fire (Section 2.1 – 2.4) or comparisons with other 
models and observations (Section 2.5). We discuss WRF's background, meteorological forcing, and resolution 
in Section 2.1, input data and preprocessing in Section 2.2, and fire-code implementation in Section 2.3. Our 
configuration choices and motivations are detailed in Section 2.4 before discussing comparisons to observations 
and benchmarks in Section 2.5.

2.1. Weather Model (WRF)

All of our simulations have WRF (Weather Research and Forecasting tool) at their core (Skamarock et al., 2019), 
a long-standing community model capable of simulating a wide range of atmospheric phenomena from global 
climate to cloud microphysics. We take advantage of WRF's nested domain configuration options, to feed synop-
tic meteorological data through a coarse-resolution domain and into a high-resolution LES domain where the fire 
code runs. This form of mesh refinement is a common practice in WRF and allows us to resolve several scales 
of meteorology at once.

Our WRF simulations use a two-domain configuration going from 1-km resolution on the outer domain to 200 m 
on the inner domain; we include only one way coupling from the outer to the inner domain. Using a 50 km by 
50 km inner domain and 200 km by 200 km outer domain, together with the meteorological boundary conditions 
from 3 km HRRR forecasts, WRF can resolve synoptic, mesoscale, and boundary layer features for many days 
into the simulation. Mesoscale/synoptic meteorology is a well-known driver of wildfire behavior, with surface 
wind events commonly linked to the breakdown of the upper-level ridge or passing of synoptic lows and fronts 
(Tymstra et al., 2021).

We choose 200 m for the base LES horizontal resolution because at the scale of medium-large wildfires (∼50 k 
acres), it allows us to run two to three times as fast as reality. Although 200 m is in the gray zone (aka terra incog-
nita), or the range at which PBL schemes and LES can both underperform (Juliano et al., 2022; Rai et al., 2019; 
Wyngaard, 2004), our early results indicated that increasing the resolution to 100 m grid spacing did not improve 
simulations significantly enough to warrant the extra computational time (see Figures S1 and S2 in Supporting 
Information S1).

It's well known that turbulence plays a significant role in the way weather and wildfire activity interact (Section 
S1 in Supporting Information S1). Here we simulate some of those important dynamics through WRF's LES 
configuration. In our inner domain, the Planetary Boundary Layer (PBL) scheme is turned off and a 3D turbulent 
kinetic energy (TKE)-based sub-grid scale (SGS) scheme is used to predict eddy diffusivity (Deardorff, 1980).

2.2. Input Data (WPS)

For all simulations, we use the WRF Pre-processing System (WPS) to interpolate input data and format the data 
to be read by WRF. Both domains require interpolation of meteorological data, topography, and land-surface 
data, while data such as fuel category, fuel density, and fuel moisture are interpreted to the fire model sub-grid.

Our simulations run with initial and boundary conditions from the High-Resolution Rapid Refresh (HRRR) 
model, which are 3 km resolution hourly updated instances of WRF from NOAA that run over the United States 
(Benjamin et al., 2016). HRRR assimilates data from satellite, aircraft, and many other observations and is fore-
casted out up to 48 hr in advance at every six-hour forecast, and 18 hr in advance otherwise. Here we always use 
the 0-hr forecast for initial and boundary conditions which are the closest to observation. Although there are other 
meteorological products with similar resolutions that would be suitable for WRF-Fire (NAM 3 KM CONUS) we 
are not aware of a public archive for them, and other meteorological forecasting data available are too coarse to 
use in a single nested domain study. The impact of using either coarser or non-archived meteorological input data 
is left to future studies.

While our outer domain uses default topography to simulate mesoscale phenomena, turbulence in an LES 
domain needs a roughness element or initial disturbance to be spun up realistically. A fully spun up Atmospheric 
Boundary Layer (ABL) may require long fetches over steep topography or continuous perturbation methods 
(Lee et  al.,  2019) so to trip turbulence here, we use high-resolution topography and a roughly 20  km fetch 
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in all directions. Although confirmation of fully developed turbulence is beyond the scope of this study, key 
turbulent structures and interactions appear in our simulations (Section S1 and Figures S3–S5 in Supporting 
Information S1).

Our 30 m resolution topographic data set comes from the LANDFIRE archive (Landscape Fire and Resource 
Management Planning Tools, (Ryan & Opperman, 2013)) where data is available over the contiguous United 
States (Figure 1). The 30 m topographic data is interpolated to the 200 m LES grid and either smoothed slightly 
using the WPS native smoothing found in GEOGRID.TBL or spectrally smoothed (Kosovic, 2021) to obtain 
speed-ups for possible operational purposes. Smoother terrain lowers vertical wind velocities and reduces the 
chance of winds being advected beyond a cell's length (De Moura & Kubrusly, 2013). This allows for numer-
ical stability on larger time steps and computational speeds of up to six times faster than reality for this fire 
(Section 2.4).

Another consideration in modeling with WRF is the use of land-surface models. We selected the highest resolu-
tion land cover data set intrinsic to the general WRF static input data, a 9 s NLCD (National Land Cover Data-
base) data set, which is specified during the pre-processing configuration, on the namelist.wps file:

Figure 1. Inputs for WRF-Fire simulations of the 2019 Williams Flats Fire ignited just before August 4th. (a), fuel categories represented here include dry grass (102), 
dry timber-shrub (165), long-needle litter (188), and no fuel (14, light green, see Section 2.3) from the 40-category data set (Scott, 2005). Ignition point is chosen as 
approximately the middle of the first VIIRS retrieval (see Figure 2). (b), No-fuel sections of fuel category are either the scattered and no heat areas at the interior of 
the fire or containment lines. The intense heat region in hatched red, taken from NIROPS the night of August 3rd, is the only region which is set to burn at the start of 
simulation.
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geog_data_res = 'nlcd2006_9s + 30s','3s + nlcd2006_9s + 30s' 

Fuel category is central to WRF-Fire's burning scheme in separating types of fuels and their propensity to burn 
and spread. We gather fuel category data from the LANDFIRE website (Ryan & Opperman, 2013), which uses 
the Fuel Characteristic Classification System (FCCS) and separates fuel loads into low, medium, or high load 
categories. We performed our simulations using the 2016 version of the FCCS classification using either the 
13-category (Anderson, 1981) or 40-category data (Scott, 2005). A number of corresponding coefficients that 
influence fire-spread are listed in the configuration file namelist.fire (see Data Availability Statement), including 
fuel density, fuel depth, and weighting coefficients for mass loss rate curves.

Dry fuels can be a significant driver of wildfire behavior and smoke emission, and to better understand model 
sensitivity to fuel moisture, we incorporate recently derived fuel moisture satellite products intro WRF-Fire 
as static input conditions (Kosović et al., 2020). Here we use the WRF-Fire code developed for Colorado Fire 
Prediction System (CO-FPS) which allows fuel moisture content (FMC) maps from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) instruments Terra and Aqua to be ingested into our simulations at 1 km 
resolution (Kosović et al., 2020). Fuel moisture maps (Figures 1c and 1d) are static for each simulation and are 
usually retrieved around 12 hr before the start of our fire simulations. There are dead and live fuel moisture maps, 
and in the CO-FPS model live fuel can both burn and be converted to dead fuel. The dead FMC maps that we 
use are typically lower in FMC (6.5% mean value for Figure 1cthan what WRF prescribes as its default value 
(8%)  and as dead fuels make up the bulk of the fire-spread along the ground, we generally get faster fire spreads 
when using these satellite FMC products as inputs.

2.3. Fire-Spread Model (WRF-Fire)

At the smallest scales of our simulations is the fire-spread model, a sub-grid semi-empirical algorithm with the 
Rothermel equations at its core (Rothermel, 1972). Like many other fire-spread models the rate-of-spread (ROS) 
is a function of wind speed, fuel moisture, and slope of the topography with scaling effects from fuel properties. 
Fuel combustion rate scaling factors set in the configuration file namelist.fire modulate these equations and thus 
influence the ROS and heat release of the model. Inputs are interpolated, combustion is parameterized, and the 
fire front is propagated on our LES domain's sub-grid with a grid spacing of 50 m (Coen et al., 2013).

The propagating fire line is tracked by an improved level-set function which represents a line as the intersection 
of a signed three-dimensional curve and a plane (Muñoz-Esparza et al., 2018). This allows for fire lines to split 
and rejoin in natural ways and is generally considered more accurate than other common methods for representing 
fire line such as Huygen's elliptical algorithm (Anderson et al., 1982). The signed nature of the curve, negative 
on the inside of the fire, is a crucial part of propagation, but over time the function can accumulate error, lose its 
signed nature, and yield inaccurate results (Chopp, 1991; Sussman et al., 1994). A reinitialization of the level-set 
function is often implemented to account for this and the number of iterations of the algorithm can thus act as 
an important numerical parameter. WRF-Fire recently received an update implementing high-order numerical 
methods to advance the level-set function and re-initialization as part of the fire-spread model (Muñoz-Esparza 
et al., 2018) which we use in this work. A dependence of the re-initialization on the LES time step was discovered 
in this work and changes were made to the “FIRE_LSM_REINIT_ITER” parameter to account for this (Section 
S2 in Supporting Information  S1). For this study, we find 3.3 iterations of re-initialization per second to be 
optimal.

WRF-Fire can be ignited by points or lines but over time may deviate significantly from observation. In addi-
tion, after a long integration (∼>2 days) it becomes impractical to start from point ignitions. To overcome this, 
WRF-Fire can also be ignited from an observed perimeter, which can help realign a simulation with observations 
and reduce the computational time compared to simulating the fire progression from a point/line. Here we use 
the National Infrared Operations (NIROPS) aircraft retrievals, flown at most once a day on large wildfires, which 
have high spatial resolution and resolve regions of high intensity, scattered heat, and no heat. Within the fire 
perimeter, negative values are written into WRF's Level-Set Function (LFN) history variable to represent burning 
regions. In the scattered and no heat regions within the perimeter, we remove the fuel so that no burning over 
already burnt fuels occurs.

Currently, WRF-Fire only considers the burning of surface fuels and thus can underpredict heat flux where crown 
fires have occurred. Here we implement a modification of fuel densities (kg/m 2) to make up for the missing fuel 
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load and subsequent heat output when burnt. For the 13-category fuel cate-
gory data, we replace fuel densities with their closest corresponding cate-
gory value from a list of average fuel densities for wildfires over three major 
fuel types in FINN (Fire INventory from NCAR, (Wiedinmyer et al., 2011) 
corresponding to grasslands (0.98 kg/m 2), savannah (5.7 kg/m 2) and temper-
ate forest (10.49 kg/m 2). Other fuel loading models and observations in the 
region show a wide range of estimates with FINN values falling in between 
and getting closer to observations than most (Drury et al., 2014). In addition, 
the data from FINN represents average fuel densities burned for different 
fuel categories, which includes canopy burning, making it an ideal choice 
for an implicit model which aims to correct fuel density burning on average 
rather than explicitly accounting for canopy fires. For the 41 category fuel 
category data, we group the categories into the three major FINN categories 
and then normalize their fuel density, so the average of the group is equal 
to the corresponding FINN value, thus retaining the relative variability for 
categories within each group (Figure  1; Table S1 in Supporting Informa-
tion S1). Both methods yield significant improvements in heat output when 
compared to satellite retrieved FRP (Section 3.3). A caveat of this implemen-
tation is that it assumes all fuel is on the surface and thus could affect fire 
spread. However, we kept this implementation as this sensitivity has not been 
assessed in previous work and it allowed for increased heat release without 
having to develop a canopy burning parameterization.

The National Interagency Fire Center (NIFC) has a repository through 
ArcGIS online for historical wildfire containment data that we use in this 

work. Here we take completed containment lines from the “EventLine2019” operational data archive and filter 
them to keep completed dozer lines, completed hand lines, completed lines, and roads as completed lines for the 
Williams Flats Fire. The dates of completion for the containment lines appear to be inaccurate or incomplete at 
this time, as many lines are listed as being completed well after the fire burned past them. Handwritten notes on 
the efforts exist but to our knowledge are only available to fire crew. With that in mind, we use this data in an 
ideal sense, removing fuel along every containment line available for the fire from the very beginning as if all 
containment lines were constructed before the fire reached them (Figures 1a and 1b). This assumption is likely 
valid given that crews would not complete a line after a fire burned past. We additionally compared containment 
lines to road maps and found most lines are on roads, possibly indicating that lines were established well ahead 
of time. However, using containment lines with accurate dates would possibly yield different simulation results, 
likely burning past final containment perimeters more when simulations overestimate fire spread. At this time, 
we are not aware of real-time data available for such containment efforts so simulations that use this method are 
only meant to show the difference that modeling containment could make in WRF-Fire in a best-case scenario.

2.4. Model Configurations Tested

Because there were so many variables affecting fire-spread in any given simulation, we selected a few key config-
urations from the above-mentioned methods to test the model's sensitivity to important factors by sequentially 
increasing the realism of the simulations. We tested 6 different configurations: Base, Crown, FMC, Smooth-FMC, 
Contain-FMC and Contain (Table 1). All simulations share outer domain settings, domain boundaries, sub-grid 
turbulence parameterizations, standard meteorology schemes, HRRR input meteorology, and 9 s land category 
data. We take as Base simulation what we consider to be closer to default settings, 200 m horizontal resolution, 
13-category fuel data, and homogenous fuel moisture supplied in the default version of namelist.fire of 0.08 kg/
kg. To represent a fire that has crown burning, we alter the base simulation by scaling up the 13-category fuel 
density (Section 2.3; Table S1 in Supporting Information S1) in Crown simulations. We add FMC maps from 
NCAR for a FMC simulation, although we also use scaled 41-category fuel category data to match developer 
configurations and capture the most accurate representation of heat release (Section 2.2; Table S1 in Supporting 
Information S1). For a less computationally intensive model we alter the Fuel Moisture simulation by spectrally 
smoothing topography to 275 m (Section 2.2) which we label Smooth-FMC. In our Contain-FMC sensitivity, the 
FMC simulation is used but all the fuel category cells overlapping with containment lines from containment lines 

200 m 
topo

275 
smooth 

topo
Fuel 

moisture

Fuel 
density 
scaling Containment

Base

Crown

FMC

Smooth-FMC

Contain-FMC

Contain

Note. Differences between simulations' configuration options with check 
marks indicating which features (columns) and used in which configurations 
(rows). Topo is short for topography, and explanations for configuration 
options are described in Section 2.4.

Table 1 
Simulation Configurations
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are set to the zero-fuel category to simulate an ideal containment scenario (Section 2.3). Our final sensitivity 
Contain takes the contain simulation and turns off the fuel moisture scheme so we can analyze the effect of our 
ideal containment scenario without FMC. We also construct an Ensemble average forecast from the FMC and 
Crown sensitivities as they are usually the furthest spread apart in predictions and feasible for use in an opera-
tional setting.

2.5. Observations and Benchmarks

Active fire products from NOAA's Geostationary Operational Environmental Satellites (GOES) Advanced Baseline 
Imager (ABI) produce fire count and Fire Radiative Power (FRP) at 5-min intervals using the Wildfire Automated 
Biomass Burning Algorithm (WFABBA) algorithm (Schmidt,  2020). These GOES-17 fire pixels were filtered 
similarly as in previous work (Li et al., 2022) based on flag and only kept if the flag was for a processed fire pixel 
(10), high-probability fire pixel (13), or medium probability fire pixel (14) excluding cloudy, saturated, and low 
probability fire pixels. GOES data was not parallax corrected, but aggregated over a box where pixels corresponding 
to the Williams Flats fire are still contained (Lat 47.90–48.05, Lon −118.67–118.3) as done in previous work (Ye 
et al., 2021; Berman et al., 2021). Here we use data from GOES-17 to evaluate wildfire simulations at higher-temporal 
resolution than any comparison that we are aware of in the literature. To directly compare WRF-Fire and GOES-17 
FRP, WRF-Fire output is re-gridded to the GOES-17 grid by summing up heat fluxes inside GOES-17 cells (2 km 

Figure 2. The first 4 days of point ignited simulations for the 2019 Williams Flats Fire. For a breakdown of sensitivities see Section 2.4 and/or Table 1. VIIRS hot 
spots are 375 m resolution satellite products that indicate the presence of fire and pass near any location usually twice per day. The simulations were ignited at 3 a.m. 
PDT, near the time of first report, at the ignition point shown in Figure 1.
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horizontal resolution). Comparing cells that are on fire in WRF-Fire versus GOES-17 on the GOES-17 grid gives us 
a unique comparison in fire count, which is the number of pixels deemed on fire by GOES-17 or assumed on fire if 
GOES-17 could somehow observe our simulation (i.e., Equivalent Fire Counts). In addition, summing up the total 
radiant power over all cells inside the fire domain (calculation described below) gives us a measure of a simulated 
fire's FRP. Both FRP and Fire Count are processed on 5-min windows and then averaged over each hour.

These comparisons rely on a few assumptions about the amount of radiation from the fire that would realistically 
be observed by GOES-17. First, we assume that only 20.5% of the total heat released by WRF-Fire (Sensi-
ble + Latent) is in the form of radiation that can be observed by satellite. This ratio is an average of the ideal 
range of radiant fraction measured in Johnston et al. (2017), which is notably at the higher range of estimates 
compared to previous studies (Freeborn et al., 2008) but not outside classical estimates (Byram, 1959). The rest 
of the heat is assumed to be partitioned into latent, convective, and conductive heat. In reality, the exact ratio is 
likely more variable and dependent on at least sensor angle (Johnston et al., 2017), wind speed, fuel depth, fuel 
moisture, and fuel category (Frankman et al., 2012), but we use a constant given the considerable uncertainty in 
those relationships in the literature. Second, we assume that GOES-17 has a minimum FRP per pixel that it can 
detect, below which the pixel will not be considered on fire. We take this minimum value to be 25 MW per pixel 
based on the similar resolution between GOES-17 and MODIS Aqua's day edge, where the exponential drop off 
in FRP density is around 25 MW (Peterson, Hyer, et al., 2013; Peterson, Wang, et al., 2013). More recent studies 
(Li et al., 2020; Xu et al., 2021) found thresholds of 30–35 MW for GOES retrievals, but differences in FRP and 
Fire-count were nearly imperceptible across this range. A snapshot of WRF-Fire's equivalent fire counts versus 
GOES-17's fire counts shows that the algorithm produces a realistic pixel distribution (Figure S7 in Supporting 
Information S1). In addition, while fire counts shown in Figure 8 show reasonable agreement after thresholding, 
choosing a minimum pixel power threshold was found to not significantly affect FRP results.

We used several other data sets to evaluate WRF-Fire against. The Visible Infrared Imaging Radiometer Suite 
(VIIRS) is a sensor on board the S-NPP satellite that usually samples fires twice a day (day and night overpasses), 
and produces fire hotspot pixels and FRP at a nadir resolution of 375 m (Schroeder & Giglio, 2017). Fire hotspots 
were aggregated to estimate burned area (Berman et al., 2021) which we use in cases of missing NIROPS flights 
along with a VIIRS FRP product that was used to evaluate WRF-Fire equivalent FRP. We also compared WRF-Fire 
FRP to the MODIS/ASTER Airborne Simulator (MASTER), an infrared sensor flown on the DC-8 aircraft during 
FIREX-AQ from which an FRP estimate can be derived as done in previous work (Thapa et al., 2022).

Assumptions commonly used in smoke forecasting are used here as benchmarking metrics. We compare WRF-Fire 
predictions of daily burned area to a persistence forecast computed using the difference between NIROPS perim-
eters on Day 0 and the previous day. When NIROPS is not available we used a VIIRS based estimate (Berman 
et al., 2021). HRRR-Smoke (Ahmadov et al., 2017) and NCAR WRF-CHEM (Kumar et al., 2021) are smoke 
forecasting models which have fixed diurnal cycles that we compare WRF-Fire diurnal activity to. The diurnal 
cycles are normalized by the magnitude of the sum of FRP values (Ye et al., 2019, 2021).

Although there are no high-quality observations of surface meteorological conditions within our second domain, 
comparisons between nearby US Forest Service Remote Automatic Weather Stations (RAWS) and WRF mete-
orological variables provided us some insight into our simulations accuracy in simulating the weather events that 
influenced the Williams Flats Fire. The Wellpinit RAWS stations is ∼35 km from the Williams Flats Fire so it 
provides basic meteorological diagnostics for the region. Figures S8 and S9 in Supporting Information S1 show 
the timing and magnitude of WRF winds are likely reasonable although perhaps slightly underpredicted. Air 
temperature and Relative Humidity (RH) also show reasonable magnitude and temporal cycles. Although only 
one WRF-Fire simulation is shown, it's representative of the other simulations and days.

Computational times over this 50 km × 50 km domain with 400 cores were six times faster than reality when 
spectrally smoothed, and three times faster otherwise, but consistent results depend on adjusting the number of 
re-initialization iterations if the time step is reduced.

3. Results
3.1. Burned Area Perimeters

Burned area perimeters are plotted for our simulations at times corresponding to NIROPS perimeter products or 
VIIRS retrievals (Figures 2 and 3; Figure S11 in Supporting Information S1). We find that, especially in point-ignited 
simulations, spatial differences between WRF-Fire and NIROPS's burned area perimeters generally increase over time 
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as we might expect from a stochastic weather forecast (Figure 2). As time passes, errors compounded on each other, 
with fires continuously spreading along fronts that were contained (Figure 1b) or continuously stagnating in direc-
tions that should have burned more quickly (Figure 2). Simulations often burned too much along the grassy southern 
and western flanks where containment was effective and not enough into the forested mountains where containment 
lines were sparse (Figure 1b). Inclusion of containment lines yielded better perimeters in almost all cases, although in 
the case of a point ignition the fire seemed to make its way through the containment perimeter, likely either because 
of gap in containment data or a river that is not well represented in the fuel category data (Figure 2).

When igniting WRF-Fire from an observed fire perimeter (i.e., later into the fire), many of these problems were 
minimized (Figure 3). Often, the already burned interiors blocked fire from spreading back into already burned 
areas, forcing spread in the right direction. Also, because the fire burn toward a large river bend in the south and 
east, simulations ignited or burning later into the fire were trapped within these natural boundaries.

3.2. Total Burned Area and Daily Burned Area

From these perimeters we calculate a total burned area time series for WRF-Fire simulations to compare against 
observed burned area estimates (Figures 4a and 5a). We found the most consistent way of computing burned area 
from WRF-Fire was to input the wildfire perimeters from our spatial plots (e.g., Figures 2 and 3) into a polygon 
area calculation scheme using an equal area projection (see Data Availability Statement). Differences in initial 

Figure 3. Three-day forecasts of WRF-Fire's real perimeter ignition simulations, starting at 23:10 PDT on 5 August 2019, for the Williams Flats Fire. See Section 2.4 
and/or Table 1 for a breakdown of different simulations. The gray blue color of the river that also extends into the center of the fire is the no-fuel region, here 
representing burnt out fire interiors, water, and urban or agricultural non-fuels.
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burned area between NIROPS and WRF-Fire when starting the fire from a real perimeter (e.g., 23 PT on August 
5th in Figures 3 and 5) can be attributed to the way the level-set function is written into the inputs as a distance 
transform that results in slightly positive values close to and inside the perimeter. This is likely a relatively small 
factor in the prediction skill overall.

NIROPS perimeters are taken once every night, if flight conditions are favorable, when the fire has mostly 
finished burning, so we take differences in consecutive NIROPS perimeters as daily burned area observations. 
We also take differences in WRF-Fire permitters over NIROPS retrieval windows when calculating daily burned 
area for WRF-Fire (Figures 4b and 5b). Using the Root Mean Squared Error (RMSE) between daily burned area 
predictions and NIROPS observations we calculate and plot the Skill Score as defined by:

Skill Score = 1 −
RMSE(WRF)

RMSE(persistence)
 (1)

Figure 4. (a), Time series of total burned area for point ignited simulations. See Section 2.4 and/or Table 1 for a breakdown of different simulations. (b), Daily burned 
area for the same set of simulations and observations as (a). Persistence is forecasted for 6 days and based on the day 1 VIIRS burned area estimate.
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The skill score is computed for all simulation days and sensitivities (Figure 6), positive values representing frac-
tional improvement over persistence and 0 or below indicating reduced skill. Because this is a single fire with 
just five different ignition days, data quantity and therefore generalizations are limited, but the trends appear 
consistent and explainable for this study.

In general, we see a significant overestimation of burned area in our time series unless fuel density was increased 
or containment modeling was used (Figures 4 and 5). We note that simulations without containment at times 
bound the observations (Figure 5; Figure S14 in Supporting Information S1) and thus their ensemble average has 
the potential to predict burned area progression better than those individual models. Here we took the ensemble 
product to be the average of the crown and FMC configurations because they often display opposite behaviors, 

Figure 5. (a), Burned area time series for real perimeter ignited simulations starting on 6 August 2019. See Section 2.4 and/or Table 1 for a breakdown of different 
simulations. (b), Corresponding daily burned area plot.
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underestimating and overestimating respectively. Including only two models in the ensemble average also allows 
for the potential for reasonable computational time of the average in an operational setting. We find that on 
average, the ensemble forecast outperforms all other non-containment configurations in predicting daily burned 
area (Figure 6).

We find that simulations which consider containment modeling (contain, contain-FMC) have higher skill than 
persistence for the first few forecast days, but which decreases over time (Figure 6). Predictions of daily burned 
area in our contain-FMC simulations are, on average, 30% more accurate than persistence over a 5-day forecast. 
In contrast, simulations without containment show a steep skill decrease on days one and two followed by an 
increase on later days, in some cases becoming more skillful than persistence toward the end of the fire. We 
can also see that using containment modeling together with fuel moisture maps yields better results than the 
containment measures alone, on average 15% more accurate in daily area burned over a 5-day forecast. Including 
fuel moisture maps, without containment modeling, did not improve our accuracy overall but FMC runs did add 
to skill when used as a factor in the ensemble average values. Despite topography being spectrally smoothed to 
275 m, smooth-FMC configurations do not show a large decrease in skill compared to other non-containment 
models in our results.

We also plot the absolute error in daily burned area for one, two, and 3-day forecasts versus their ignition day 
(Figure 7). In the ensemble average and in models without containment, we can see that accuracy improves as 
perimeters are ignited later in time, at times improving upon persistence for day one forecasts when ignited on 
later days. This is likely to be a result of the fire being trapped between the river and its own burnt-out interior on 
later fire days as described in Section 3.1, although other factors are expanded on in the discussion.

3.3. Evaluation of Energy Release and Diurnal Cycles

We produce an FRP and fire count product (Section 2.5) from WRF-Fire and show one of our more accurate 
ignition days simulations (Figure 8). Fire count curves have similar magnitude and shape to GOES-17 products, 
suggesting that our physical thresholding, radiant heat fraction, and re-gridding process allows for a reliable 
comparison framework between WRF-Fire heat outputs and GOES-17 FRP retrievals.

We find that for configurations that have scaled fuel density, FRP values are always closer to observation on 1-day 
forecasts and usually closer to observation in following days, alluding to the lack of canopy burning in WRF-Fire 

Figure 6. Time series of Skill Score (Equation 1) between WRF-Fire and NIROPS on daily area burned. Positive values 
represent fractional improvement over persistence, zero or negative values indicate reduced or no skill increase. Top axis 
shows the number of simulations per data point. There were 5 one-day forecasts, 4 two-day forecasts, 3 three-day forecasts, 2 
four-day forecasts, and 1 five-day forecast. The same breakdown goes for persistence forecasts.
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base configuration (Figure 8b). Despite our fuel density scaling correction and even though fire counts may be 
high or daily burned area accurate, the FRP can still be underpredicted. This might be due to uncertainties in fuel 
type, fuel density, radiant heat fraction, or some combination of factors.

Another discrepancy we see with FRP comparisons is overprediction of nighttime burning for some simulations 
(Figure 8b; Figure 15 in Supporting Information S1), which may be due in part to the lack of a dynamic, or time 
variable, fuel moisture scheme in this study (Hiers et al., 2019; Moinuddin et al., 2021). Meteorological condi-
tions at Williams Flats over the 7th and 8th enhanced the nocturnal fire activity (Peterson et al., 2022), which is 
reflected in the GOES-17 data and partially captured by WRF-Fire simulations (Figure 8), albeit overpredicted.

We found it was common in this study for modeled FRP to be out of phase with observation, usually with fire activ-
ity starting and ending too soon. To quantify this lead time, we looked at cross-correlations between WRF-Fire 
and GOES-17 FRP curves. To measure just the correlation in the broad day-night burning signal we removed 
much of the noise in FRP data. All simulated FRP curves were smoothed with a 12th degree Savitsky-Golay 
filter, Min-max normalized, and had early morning burning from the modeled FRP curves removed due to unre-
alistic nighttime burning from the previous day (Figure 9). We then estimated the lead time from modeled to 

Figure 7. Absolute difference between WRF-Fire and NIROPS on daily burned area for different ignition days and different 
lengths of time into the simulation. There are no 3-day forecasts for August 7th as the fire had been mostly contained by 
August 9th.
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observed FRP curve by selecting the offset time which yielded the maximum correlation coefficient. Here we 
found that, on average, all models and prescribed temporal cycles led FRP retrievals by at least an hour, which 
increased with forecast day (Figure 10). On average, WRF-Fire's accuracy in temporal cycle is only comparable 
to the prescribed diurnal cycle that performed the best (HRRR-Smoke) when containment is applied, fuel mois-
ture maps are used, and fuel density is scaled up simultaneously (i.e., contain-fmc simulation). Although WRF 
and nearby RAWS surface wind speeds led, or peaked earlier in the day than, GOES-17 FRP temporal cycles, 
surface Air Temperature (T) and Relative Humidity (RH) lagged behind FRP, peaking or hitting a low later in the 
day (Figures S8 and S9 in Supporting Information S1).

4. Discussion
It is not uncommon for studies to report model biases in overpredicting fire spread and although the mechanisms 
behind it may be difficult to identify, fuel models are often implicated as the cause (Dahl et  al.,  2015; Salis 
et al., 2016). Here we observe a general bias toward overestimation of burned area with some notable exceptions 
in simulations that were ignited or burned late into the fire, had increased fuel density, or accounted for contain-
ment. The inclusion of FMC maps created larger overpredictions at times as observed conditions were drier than 
what WRF prescribed by default. This is remedied however when used in conjunction with containment and fuel 
density scaling which then led to the most accurate results overall. Conversely, when modeling containment and 

Figure 8. Simulations starting from a real perimeter ignition on 6 August 2019. (a), Fire counts, either from GOES-17 
directly or with WRF-Fire heat data re-gridded and modeled after GOES-17 fire count retrieval (Section 2.5). (b): Fire 
Radiative Power (FRP) for all simulations, GOES-17 retrievals, VIIRS retrievals, or the master data from the DC-8 airplane 
flown in the joint NASA-NOAA 2019 campaign FIREX-AQ.
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increasing fuel density without fuel moisture maps, we see an underestimation of burned area (crown and contain, 
Figures 3 and 5) implying fuel moisture maps generally create more accurate forecasts when containment and 
fuel density increases are incorporated as well. Thus, our results indicate that increasing realism in all aspects 
simultaneously (moisture, heat release and containment efforts) is needed to achieve optimal results.

Increasing fuel density to account for crown fires played a role in reducing fire spread where it was part of 
the configuration. Simulations with increased fuel density but without the fuel moisture maps had significantly 
less fire spread than the base in the forested regions (Figures 2 and 3) and at times ended in relative stagnation 
(Figure 3). This is to be expected as higher density fuels spread slower, release more heat and create a stronger 
convection sink in the center of the plume, potentially inhibiting fire spread (Quaife & Speer, 2021). These results 
show that WRF-Fire and other coupled models are sensitive to canopy fire modeling and fuel density charac-
teristics. Thus, future work needs to implement canopy burning in a more explicit way (e.g., burning canopy 
and surface fuels independently) to assess effect into fire spread and heat release. Some of this work is already 
underway (Shamsaei et al., 2023).

In this study, modeling containment had the highest impact in reducing burned area overestimation with the 
caveat that we have a relatively idealistic way of accounting for containment, where all fire lines are assumed 
to be completed at the start of the simulation (Section 2.3). While this assumption was necessary for our study, 
future work could include more accurate containment dynamics. Despite this, these results, and the presence 
of significant containment efforts (Figure 1) suggest that for this fire, containment likely played a large role in 

Figure 9. Normalized temporal cycles by time into simulation and day ignited. WRF-Fire simulations and GOES-17 data are interpolated, smoothed, and zeroed out 
in the early hours of the day to improve correlation statistics for Figure 10. NCAR WRF-CHEM and HRRR-Smoke are prescribed temporal cycles for smoke emission 
modeling, often used in conjunction with persistence forecasting (Section 2.5).
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reducing the spread of the fire, and without modeling containment, overestimation is likely to occur when fore-
casting burned area. Access to near-real time information on completed and planned fire lines would facilitate the 
inclusion of this information when these tools are used in forecasting mode.

Without modeled containment, simulations tend to overestimate fire-spread until the later days of the fire where 
intense burn days occurred. In these final days of the fire, steep topography, lack of roads, a large burnt-out inte-
rior, and proximity to the river bend may have made containment difficult or not needed, resulting in few contain-
ment lines in the forested mountain ridges (Figure 1) and improved accuracy for non-containment simulations 
(Figures 6 and 7). Once these factors are in place, we can see that not only are non-containment runs frequently 
more accurate than persistence, but also the ensemble mean can be more accurate than the containment runs 
(Figure 7).

The same configurations that increased accuracy in burned area and FRP (i.e., contain-fmc) also increased accu-
racy in predicting temporal cycles, despite still consistently leading the observations. In general, WRF-Fire and 
prescribed smoke emission curves both predict the fire as picking up too early in the day and dying off too early 
at night. Because the modeled temporal curves do not seem to get less out phase with observation as the fire 
is ignited later into the fire (Figure 9), more accurate meteorology or fire perimeters are perhaps unlikely to 
be the main driving factor in the lag we observe. One factor influencing this could be the lack of dynamic fuel 
moisture modeling in this study as fuel may not properly dampen when the temperature drops at night. Indeed, 
from comparisons between WRF and RAWS data (Figures S8–S10 in Supporting Information S1), it appears 
that although simulated and observed surface wind speeds lead observed FRP, often picking up in the morning, 
surface RH and T don't reach their minimum and maximum, respectively, until the afternoon. This supports the 
idea that the FRP temporal curve is shifted later into the day by the cycle of relative humidity and temperature 
that modulate fuel moisture content and which is missing in our simulations. New releases of WRF-Fire contain 
a dynamic fuel moisture model that could be assessed in future work.

A few real-world insights are implied from the difference between WRF-Fire configurations in this study. Based 
on the impact that containment modeling makes in this study, it’s very likely the effort by fire-fighters along the 
southern and western flanks of the fire, specifically hand lines, dozer lines, and roads as lines, were effective in 
preventing a much larger wildfire. In this fire, containment lines in flat grasslands may have been easier for fire 
crews to implement compared to steep forests but the results here indicate that such efforts likely make a large 
difference in containing the overall fire spread anyway. We believe that the development of a near-real-time 
public data repository for current and planned containment lines and/or the addition of more accurate timestamps 
in the historical archives have the potential to greatly improve smoke and wildfire modeling efforts.

Figure 10. Time series of mean absolute lead time between WRF-Fire simulations, smoke emission model prescriptions, 
and GOES-17 temporal cycles (Figure 9). Lead time is the offset of cross correlation that produces the maximum correlation 
coefficient. Although we show the absolute offset here, it’s almost always the case that the model temporal cycles led 
observations, perhaps in part do our static fuel moisture input (Section 4). See Table 1 and/or Section 2.4 for breakdown of 
the models.
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5. Conclusions
Wildfire forecasting remains a challenging task in both operational and research settings. Here we've partially 
alleviated this by assessing WRF-Fire's sensitivity to different model configurations. Inputs such as FMC, scaled 
fuel densities, and containment lines were incorporated into the model in different configurations and the results 
were compared against common forecasting metrics. Daily burned area and FRP were calculated and compared 
to standard methods of forecasting such as persistence and assumed temporal cycles. Results suggest that certain 
configuration options can be the difference between outperforming standard forecasting methods or incurring 
significant error, with containment modeling being the most important for this fire.

We found that WRF-Fire can be more accurate than persistence in burned area, and thus improve smoke forecast-
ing skill, when used with sufficiently realistic input conditions. The combination of incorporating novel inputs in 
containment, fuel moisture, and fuel density in one configuration yielded the best results, with 30% less error than 
persistence on daily burned area over a 5-day forecast. To a lesser degree, using an ensemble forecast, igniting 
later into the fire, or forecasting for big fire growth days also helped in improving upon persistence. When used 
as inputs, satellite derived fuel moisture maps improve accuracy in daily burned area occasionally, but only when 
combined with containment and fuel density increases do they provide a consistent boost in accuracy.

This trend continued into our analysis of diurnal cycles, where accounting for containment, fuel moisture, and 
fuel density increases showed the most skill in capturing temporal cycles and heat output. Under these best-case 
configurations, WRF-Fire matches the accuracy of prescribed diurnal cycles used in air quality models. We found 
that increasing the fuel density, especially when FMC balanced out the reduced fire spread, improved WRF-Fire's 
FRP outputs significantly.

On average, all WRF-Fire temporal cycles and smoke emission model cycles commence too early in the day by 
at least an hour, and although the cause is not completely clear, a further investigation into dynamic fuel moisture 
schemes could help to illuminate this. In addition, we found simulations that accounted for FMC could produce 
nighttime burning similar to GOES-17 observations but often overestimated. With the increase of nocturnal burn-
ing under climate change (Balch et al., 2022) dynamic fuel moisture and nighttime burning could be important 
for future studies.

From a methodological standpoint, this study has established several important comparisons between simulation 
and observation. We have shown that WRF-Fire can be compared against GOES-17 fire count and FRP after 
re-gridding to the GOES-17 grid and accounting for the radiant heat fraction. Several insights have been drawn 
from this comparison including that the WRF-Fire default configuration does not release enough heat compared 
to satellite observation. In addition, our sensitivity study on WRF-Fire's second domain time step, or by proxy, 
the number of re-initializations per second of the level set function, was a previously unexplored topic in real fire 
simulation studies and shows the need for future studies to carefully consider time step choice on a case-by-case 
basis.

Data Availability Statement
The official repository for WRF, which includes WRF-Fire configurations, is through GitHub (WRF: The official 
repository for the Weather Research and Forecasting (WRF) model, 2021). The WRF Pre-processing System 
(WPS) is also available through GitHub (WPS: The official repository for the WRF Preprocessing System (WPS), 
2021). The Open Wildland Fire Modeling E-community maintains a guide on WRF-Fire which was useful for 
this project (https://wiki.openwfm.org/wiki/How_to_run_WRF-Fire_with_real_data).
Input data for WRF-Fire is open source and described in-text. The High-Resolution Rapid Refresh (HRRR) 
model (Dowell et  al.,  2022) output is archived in grib2 format at the University of Utah https://home.chpc.
utah.edu/∼u0553130/Brian_Blaylock/hrrr_FAQ.html (Blaylock & Horel,  2021; B. K. Blaylock et  al.,  2017). 
High-resolution topography and fuel categories can be found on the LANDFIRE data distribution site (Depart-
ment of Interior, Geological Survey, and U.S. Department of Agriculture,  2016; Ryan & Opperman,  2013). 
The fuel moisture content maps are archived by the National Center for Atmospheric Research (NCAR) and 
Geoscience Data Exchange (GDEX) (Kosovic et  al.,  2019). Containment data and fire perimeters can be 
found at the National Interagency Fire Center (NIFC) Open Data Site (Wildland Fire Interagency Data Service 
(WFIGS), National Interagency Fire Center (NIFC), National Wildfire Coordinating Group (NWCG) Geospatial 

https://wiki.openwfm.org/wiki/How_to_run_WRF-Fire_with_real_data
https://home.chpc.utah.edu/%7Eu0553130/Brian_Blaylock/hrrr_FAQ.html
https://home.chpc.utah.edu/%7Eu0553130/Brian_Blaylock/hrrr_FAQ.html
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Subcommittee, 2021). Perimeters as well as intense heat and scattered heat partitions can be found on the NIFC 
Public Access Folder in Incident Specific Data (https://ftp.wildfire.gov/). RAWS data can be accessed through an 
open access online portal (Western Regional Climate Center, 2023).
To insert a fire perimeter and remove the fuel in the non-intense heat regions on the wrfinput_d02 file, we used 
the following open source python libraries:

•  netCDF4.Dataset is used to read and overwrite variables in wrfinput_d02. We read in the variable LFN_HIST 
and overwrite it with the imprinted perimeter,

•  json is used to read the polygon geometry coordinates in the perimeter file (in geojson format),
•  matplotlib.path.Path and matplotlib.path.contains_points are used to mask points in/out of the fire perimeter,
•  scipy.ndimage.distance_transform_edt is used to assign a value of 1 to points where the perimeter mask is 

True, and calculate the exact Euclidean distance between True points (inside of perimeter) and their closest 
False point (perimeter boundary). The resulting distances are reversed (1-x), yielding a new LFN_HIST field 
where negative values indicate points inside the perimeter,

•  shapely.geometry.polygon.contains is used to check if grid cells are within the intense heat areas for fuel 
removal.

The calculation of GOES-17 grid cell centers followed this tutorial on MakerPortal (https://makersportal.com/
blog/2018/11/25/goes-r-satellite-latitude-and-longitude-grid-projection-algorithm). GOES-17 Wildfire Auto-
mated Biomass Burning Algorithm (WFABBA) FRP product is generated by the Cooperative Institute for 
Meteorological Satellite Studies (CIMSS) at the University of Wisconsin, Madison. GOES-17 fire detections and 
FRP data for this study, as well as DC-8 measurements are archived by NASA/LARC/SD/ASDC (NASA/LARC/
SD/ASDC, 2020).
The following open source python libraries were used for data analysis in this study:

•  salem.open_mf_wrf_dataset was used to open multiple WRF output files in a single xarray.dataset,
•  pyproj.transform was used with cartopy contours of FIRE_AREA (WRF-Fire output) to project shapely.

geometry.polygon fire perimeters (Equal Area Cylindrical) for burned area calculations,
•  geopandas was used to open and project NIROPS shape files (Equal Area Cylindrical) for burned area 

calculations,
•  matplotlib.path.Path and matplotlib.path.contains_points were used to check if WRF-Fire grid cells were 

within GOES-17's grid cells
•  scipy.signal.correlate was used to create the cross correlation matrix from which offset in FRP temporal cycle 

was calculated,

Matplotlib v3.1.3 (Caswell et  al.,  2020) and Cartopy 0.17.0 (Elson et  al.,  2022) were used to create the 
2-dimensional figures in this paper. The Visualization and Analysis Platform for Ocean, Atmosphere, and Solar 
Researchers (VAPOR) was used to make 3-dimensional contour plots of Q-Criterion (Li et al., 2019).
A sample case has been made available for this study with Zenodo (Turney, 2023). This contains much of the 
inputs and outputs from the contain-FMC simulation ignited just before August 6th. Found there is the informa-
tion needed to run WRF-Fire including the configurations files namelist.input and namelist.fire.
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